Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Oral Dis ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623870

RESUMO

OBJECTIVES: The splicing factor transformer-2 homolog beta (Tra2ß) plays a pivotal role in various cancers. Nonetheless, its role in oral squamous cell carcinoma (OSCC) has not been comprehensively explored. This study sought to discern the influence of Tra2ß on OSCC and its underlying mechanisms. MATERIALS AND METHODS: We assessed Tra2ß expression in OSCC utilizing immunohistochemistry, qRT-PCR, and western blotting techniques. siRNA transfection was used to silence Tra2ß. Whole transcriptome RNA sequencing (RNA-seq) analysis was carried out to reveal the alternative splicing (AS) events. KEGG pathway analysis enriched the related pathways. Colony formation, transwell, wound healing, and Annexin V-FITC/PI were employed to appraise the consequences of Tra2ß silencing on OSCC. RESULTS: Tra2ß was highly expressed in both OSCC tissues and cell lines. Knockdown of Tra2ß-regulated AS events with skipped exon (SE) accounts for the highest proportion. Meanwhile, downregulation of Tra2ß reduced cell proliferation, migration, and invasion, however increasing cell apoptosis. Moreover, Wnt signaling pathway involved in the function of Tra2ß knockdown which was demonstrated directly by a discernible reduction in the expression of GSK3/ß-catenin signaling axis. CONCLUSIONS: These findings suggest that knockdown of Tra2ß may exert anti-tumor effects through the GSK3/ß-catenin signaling pathway in OSCC.

2.
Adv Healthc Mater ; : e2303674, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315148

RESUMO

Intrauterine adhesion (IUA) stands as a prevalent medical condition characterized by endometrial fibrosis and scar tissue formation within the uterine cavity, resulting in infertility and, in severe cases, recurrent miscarriages. Cell therapy, especially with stem cells, offers an alternative to surgery, but concerns about uncontrolled differentiation and tumorigenicity limit its use. Exosomes, more stable and immunogenicity-reduced than parent cells, have emerged as a promising avenue for IUA treatment. In this study, a novel approach has been proposed wherein exosomes originating from decidual stromal cells (DSCs) are encapsulated within sodium alginate hydrogel (SAH) scaffolds to repair endometrial damage and restore fertility in a mouse IUA model. Current results demonstrate that in situ injection of DSC-derived exosomes (DSC-exos)/SAH into the uterine cavity has the capability to induce uterine angiogenesis, initiate mesenchymal-to-epithelial transformation (MET), facilitate collagen fiber remodeling and dissolution, promote endometrial regeneration, enhance endometrial receptivity, and contribute to the recovery of fertility. RNA sequencing and advanced bioinformatics analysis reveal miRNA enrichment in exosomes, potentially supporting endometrial repair. This finding elucidates how DSC-exos/SAH mechanistically fosters collagen ablation, endometrium regeneration, and fertility recovery, holding the potential to introduce a novel IUA treatment and offering invaluable insights into the realm of regenerative medicine.

3.
Curr Top Med Chem ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38231069

RESUMO

The Hedgehog (Hh) signaling pathway plays a crucial role in diverse biological pro-cesses such as cell differentiation, proliferation, senescence, tumorigenesis, malignant transfor-mation, and drug resistance. Aberrant Hh signaling, resulting from mutations and excessive acti-vation, can contribute to the development of various diseases during different stages of biogenesis and development. Moreover, it has been linked to unfavorable outcomes in several human can-cers, including basal cell carcinoma (BCC), multiple myeloma (MM), melanoma, and breast can-cer. Hence, the presence of mutations and excessive activation of the Hh pathway presents obsta-cles and constraints in the realm of cancer treatment. Extant research has demonstrated that small molecule inhibitors are regarded as the most effective therapeutic approaches for targeting the Hh pathway in contrast to traditional chemotherapy and radiotherapy. Consequently, this review fo-cuses on the present repertoire of small molecule inhibitors that target various components of the Hh pathway, including Hh ligands, Ptch receptors, Smo transmembrane proteins, and Gli nuclear transcription factors. This study provides a comprehensive analysis of small molecules' structural and functional aspects in the preclinical and clinical management of cancer. Additionally, it elu-cidates the obstacles encountered in targeting the Hh pathway for human cancer therapy and pro-poses potential therapeutic approaches.

4.
Toxicology ; 500: 153691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042275

RESUMO

Environmental arsenic (As) or high-fat diet (HFD) exposure alone are risk factors for the development of cardiovascular disease (CVDs). However, the effects and mechanisms of co-exposure to As and HFD on the cardiovascular system remain unclear. The current study aimed to investigate the combined effects of As and HFD on vascular injury and shed some light on the underlying mechanisms. The results showed that co-exposure to As and HFD resulted in a significant increase in serum lipid levels and significant lipid accumulation in the aorta of rats compared with exposure to As or HFD alone. Meanwhile, the combined exposure altered blood pressure and disrupted the morphological structure of the abdominal aorta in rats. Furthermore, As combined with HFD exposure upregulated the expression of vascular endothelial cells pyroptosis-related proteins (ASC, Pro-caspase-1, Caspase-1, IL-18, IL-1ß), as well as the expression of vascular endothelial adhesion factors (VCAM-1 and ICAM-1). More importantly, we found that with increasing exposure time, vascular injury-related indicators were significantly higher in the combined exposure group compared with exposure to As or HFD alone, and the vascular injury was more severe in female rats compared with male rats. Taken together, these results suggested that the combination of As and HFD induced vascular endothelial cells pyroptosis through activation of the ASC/Caspase-1 pathway. Therefore, vascular endothelial cells pyroptosis may be a potential molecular mechanism for vascular injury induced by As combined with HFD exposure.


Assuntos
Arsênio , Lesões do Sistema Vascular , Animais , Feminino , Masculino , Ratos , Arsênio/toxicidade , Caspase 1/metabolismo , Caspase 1/farmacologia , Caspases , Dieta Hiperlipídica , Células Endoteliais , Lipídeos , Piroptose , Lesões do Sistema Vascular/induzido quimicamente
5.
Eur J Pharmacol ; 957: 175996, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597646

RESUMO

BACKGROUND: Frizzled 6 (Fzd6) is involved in the development of various disorders; however, its role in the etiology of depression remains unclear. We aimed to determine the potential regulatory mechanisms of Fzd6 as a Wnt receptor in depression. METHODS: Mice were divided into four groups: wild-type control (Fzd6WT-control), Fzd6 mutant control (Fzd6Q152E-control), wild-type reserpine (Fzd6WT-reserpine), and Fzd6 mutant reserpine (Fzd6Q152E-reserpine). Reserpine (0.5 mg/kg) was injected intraperitoneally for 10 days. Four behavioral experiments were performed to assess the effects of Fzd6Q152E on depression-like behaviors in the reserpine-treated mice. Blood samples were collected for an enzyme-linked immunosorbent assay (ELISA). Gene expression in the hippocampus was quantified using quantitative real-time polymerase chain reaction (qRT-PCR), and protein expression levels in the hippocampus were identified using western blotting. RESULTS: The Fzd6 mutation affected reserpine-induced depression-like behavioral changes in mice. ELISA revealed significantly reduced serum levels of 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF), and norepinephrine in both Fzd6Q152E-reserpine and Fzd6WT-reserpine mice, with a more pronounced decrease in Fzd6Q152E-reserpine mice, especially in norepinephrine expression. The qRT-PCR results showed significantly decreased Fzd6 expression in Fzd6Q152E-reserpine mice and altered expression of Dkk2, Gsk-3ß, Lrp6, Wnt2, Wnt3, and Wnt3a in the Wnt pathway. Western blotting revealed decreased Fzd6 protein expression in Fzd6Q152E-control mice compared to Fzd6WT-control mice, whereas Fzd6 protein expression was restored in Fzd6Q152E-reserpine mice, and Gsk-3ß expression was significantly changed. CONCLUSION: Fzd6 potentially influences reserpine-induced depressive behavioral changes and serum depressive factor alterations and modulates the expression of the Wnt signaling pathway in the hippocampus of depressed mice.


Assuntos
Depressão , Via de Sinalização Wnt , Animais , Camundongos , Depressão/induzido quimicamente , Depressão/genética , Glicogênio Sintase Quinase 3 beta , Reserpina , Mutação , Norepinefrina , Serotonina
6.
BMC Cancer ; 23(1): 668, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460940

RESUMO

BACKGROUND: Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS: The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS: The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of ß-catenin and its downstream gene through targeting PLCD1. CONCLUSION: MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/ß-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/genética , Humanos
7.
Arterioscler Thromb Vasc Biol ; 43(6): 995-1014, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021573

RESUMO

BACKGROUND: Insufficient or disrupted sleep increases the risk of cardiovascular disease, including atherosclerosis. However, we know little about the molecular mechanisms by which sleep modulates atherogenesis. This study aimed to explore the potential role of circulating exosomes in endothelial inflammation and atherogenesis under sleep deprivation status and the molecular mechanisms involved. METHODS: Circulating exosomes were isolated from the plasma of volunteers with or without sleep deprivation and mice subjected to 12-week sleep deprivation or control littermates. miRNA array was performed to determine changes in miRNA expression in circulating exosomes. RESULTS: Although the total circulating exosome levels did not change significantly, the isolated plasma exosomes from sleep-deprived mice or human were a potent inducer of endothelial inflammation and atherogenesis. Through profiling and functional analysis of the global microRNA in the exosomes, we found miR-182-5p is a key exosomal cargo that mediates the proinflammatory effects of exosomes by upregulation of MYD88 (myeloid differentiation factor 88) and activation of NF-ĸB (nuclear factor kappa-B)/NLRP3 pathway in endothelial cells. Moreover, sleep deprivation or the reduction of melatonin directly decreased the synthesis of miR-182-5p and led to the accumulation of reactive oxygen species in small intestinal epithelium. CONCLUSIONS: The findings illustrate an important role for circulating exosomes in distant communications, suggesting a new mechanism underlying the link between sleep disorder and cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Exossomos , MicroRNAs , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Privação do Sono/complicações , Privação do Sono/genética , Privação do Sono/metabolismo , Doenças Cardiovasculares/metabolismo , MicroRNAs/metabolismo , Exossomos/genética , Exossomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo
8.
Int J Mol Med ; 51(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37052257

RESUMO

Head and neck squamous cell carcinoma (HNSCC), a common malignancy of the head and neck, is associated with a rapid progression, a high mortality rate and unsatisfactory curative effects. The treatment efficacy is unsatisfactory due to chemotherapeutic drug resistance, the lack of ideal therapeutic agents, as well as the absence of clinical prognostic models. Thus, the identification of novel potential therapeutic targets for its diagnosis and treatment is vital. Ferroptosis is an iron­dependent regulatory cell death mode different from traditional cell death modes, such as apoptosis and autophagy, and has notable therapeutic potential in cancer treatment. The study of ferroptosis in HNSCC is expected to solve this bottleneck problem. In the present review, the findings, characteristics and regulatory mechanisms of ferroptosis are summarized, with emphasis on the factors and drugs that regulate ferroptosis in HNSCC, in order to provide theoretical basis for the targeted therapy of ferroptosis in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/genética , Ferroptose/genética , Apoptose
9.
Exp Ther Med ; 25(4): 152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36911376

RESUMO

Brain ischemia is an independent risk factor for Alzheimer's disease (AD); however, the mechanisms underlining ischemic stroke and AD remain unclear. The present study aimed to investigate the function of the ε isoform of protein kinase C (PKCε) in brain ischemia-induced dendritic spine dysfunction to elucidate how brain ischemia causes AD. In the present study, primary hippocampus and cortical neurons were cultured while an oxygen-glucose deprivation (OGD) model was used to simulate brain ischemia. In the OGD cell model, in vitro kinase activity assay was performed to investigate whether the PKCε kinase activity changed after OGD treatment. Confocal microscopy was performed to investigate whether inhibiting PKCε kinase activity protects dendritic spine morphology and function. G-LISA was used to investigate whether small GTPases worked downstream of PKCε. The results showed that PKCε kinase activity was significantly increased following OGD treatment in primary neurons, leading to dendritic spine dysfunction. Pre-treatment with PKCε-inhibiting peptide, which blocks PKCε activity, significantly rescued dendritic spine function following OGD treatment. Furthermore, PKCε could activate Ras homolog gene family member A (RhoA) as a downstream molecule, which mediated OGD-induced dendritic spine morphology changes and caused dendritic spine dysfunction. In conclusion, the present study demonstrated that the PKCε/RhoA signalling pathway is a novel mechanism mediating brain ischemia-induced dendritic spine dysfunction. Developing therapeutic targets for this pathway may protect against and prevent brain ischemia-induced cognitive impairment and AD.

10.
BMC Cancer ; 23(1): 162, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800936

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS: We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS: Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION: Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.


Assuntos
MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Cricetinae , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cricetulus , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
11.
Accid Anal Prev ; 180: 106925, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512902

RESUMO

Mobile phone distracted driving (MPDD) is one of the most significant and common factors in distraction-affected crashes. In previous studies, MPDD has been described as a self-selected behavior that affects driving performance, rather than a multidimensionally impacted behavior. In this study, the researchers hypothesized that external environmental features significantly impacted MPDD and tested this hypothesis by structural equation modeling (SEM). Three external latent variables (road, operation, and control factors) were measured at different times during weekdays in urban areas of Texas by integrating a large number of mobile phone sensor data and roadway inventory data. A structural model was developed to test the relationship between the latent variables and the rate of drivers involved in MPDD (MPDDR) on the roadway during different time periods. Finally, the data summary and model results revealed significant temporal effects. Standardized estimates from the SEM results revealed the positive impact of roads factors in the morning peak that broader shoulders, wider medians, and smaller curve radians were correlated with higher MPDDR in the morning peak hours; the negative impact of operation factors that higher average annual daily truck traffic (truck AADT) were associated with lower MPDDR significantly. And the impact of control factors on MPDDR is positive. In other words, the road segments with a large number of traffic signals in urban areas had a higher MPDDR than those without traffic signals. These findings could assist transportation and legislation agencies in the development of appropriate countermeasures or enforcement tactics and implement them effectively to reduce the occurrence of MPDD. In addition, this study provides a novel perspective close to the actual consideration of drivers about using mobile phones while driving, in the context of MPDD research, rather than comparing driver groups and vehicle performance.


Assuntos
Condução de Veículo , Telefone Celular , Direção Distraída , Humanos , Acidentes de Trânsito , Texas
12.
Artigo em Inglês | MEDLINE | ID: mdl-36554407

RESUMO

Vehicle emissions seriously affect the air environment and public health. The dynamic estimation method of vehicle emissions changing over time on the road network has always been the bottleneck of air quality simulation. The dynamic traffic volume is one of the important parameters to estimate vehicle emission, which is difficult to obtain effectively. A novel estimation method of whole sample traffic volumes and emissions on the entire road network based on multifactor Macroscopic Fundamental Diagram (MFD) is proposed in this paper. First, the intelligent clustering and recognition methods of traffic flow patterns are constructed based on neural network and deep-learning algorithms. Then, multifactor MFD models are developed considering different road types, traffic flow patterns and weekday peak hours. Finally, the high spatiotemporal resolution estimation method of whole sample traffic volumes and emissions are constructed based on MFD models. The results show that traffic flow patterns are clustered efficiently by the Self-Organizing Maps (SOM) algorithm combined with the direct time-varying speed index, which describe 91.7% traffic flow states of urban roads. The Deep Belief Network (DBN) algorithm precisely recognizes 92.1% of the traffic patterns based on the speeds of peak hours. Multifactor MFD models estimate the whole sample traffic volumes with a high accuracy of 91.6%. The case study shows that the vehicle emissions are evaluated dynamically based on the novel estimation method proposed in this paper, which is conducive to the coordinated treatment of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Poluição do Ar/análise
13.
Elife ; 112022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399125

RESUMO

Cardiovascular disease is the leading cause of death worldwide due to the inability of adult heart to regenerate after injury. N6-methyladenosine (m6A) methylation catalyzed by the enzyme methyltransferase-like 3 (Mettl3) plays an important role in various physiological and pathological bioprocesses. However, the role of m6A in heart regeneration remains largely unclear. To study m6A function in heart regeneration, we modulated Mettl3 expression in vitro and in vivo. Knockdown of Mettl3 significantly increased the proliferation of cardiomyocytes and accelerated heart regeneration following heart injury in neonatal and adult mice. However, Mettl3 overexpression decreased cardiomyocyte proliferation and suppressed heart regeneration in postnatal mice. Conjoint analysis of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq identified Fgf16 as a downstream target of Mettl3-mediated m6A modification during postnatal heart regeneration. RIP-qPCR and luciferase reporter assays revealed that Mettl3 negatively regulates Fgf16 mRNA expression in an m6A-Ythdf2-dependent manner. The silencing of Fgf16 suppressed the proliferation of cardiomyocytes. However, the overexpression of ΔFgf16, in which the m6A consensus sequence was mutated, significantly increased cardiomyocyte proliferation and accelerated heart regeneration in postnatal mice compared with wild-type Fgf16. Our data demonstrate that Mettl3 post-transcriptionally reduces Fgf16 mRNA levels through an m6A-Ythdf2-dependen pathway, thereby controlling cardiomyocyte proliferation and heart regeneration.


Cardiovascular diseases are one of the world's biggest killers. Even for patients who survive a heart attack, recovery can be difficult. This is because ­ unlike some amphibians and fish ­ humans lack the ability to produce enough new heart muscle cells to replace damaged tissue after a heart injury. In other words, the human heart cannot repair itself. Molecules known as messenger RNA (mRNA) carry the 'instructions' from the DNA inside the cell nucleus to its protein-making machinery in the cytoplasm of the cell. These messenger molecules can also be altered by different enzymes that attach or remove chemical groups. These modifications can change the stability of the mRNA, or even 'silence' it altogether by stopping it from interacting with the protein-making machinery, thus halting production of the protein it encodes. For example, a protein called Mettl3 can attach a methyl group to a specific part of the mRNA, causing a reversible mRNA modification known as m6A. This type of alteration has been shown to play a role in many conditions, including heart disease, but it has been unclear whether m6A could also be important for the regeneration of heart tissue. To find out more, Jiang, Liu, Chen et al. studied heart injury in mice of various ages. Newborn mice can regenerate their heart muscle for a short time, but adult mice lack this ability, which makes them a useful model to study heart disease. Analyses of the proteins and mRNAs in mouse heart cells confirmed that both Mettl3 and m6A-modified mRNAs were present. The amount of each also increased with age. Next, experiments in genetically manipulated mice revealed that removing Mettl3 greatly improved tissue repair after heart injury in both newborn and adult mice. In contrast, mouse hearts that produced abnormally high quantities of Mettl3 were unable to regenerate ­ even if the mice were young. Moreover, a detailed analysis of gene activity revealed that Mettl3 was suppressing heart regeneration by decreasing the production of a growth-promoting protein called FGF16. These results reveal a key biological mechanism controlling the heart's ability to repair itself after injury. In the future, Jiang et al. hope that Mettl3 can be harnessed for new, effective therapies to promote heart regeneration in patients suffering from heart disease.


Assuntos
Metiltransferases , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Metilação , Fatores de Transcrição/metabolismo , Proliferação de Células
14.
Free Radic Biol Med ; 193(Pt 1): 23-33, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36195162

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disease controlled by a combination of genetic and environmental factors. The Chinese hamster, as a novel animal model of spontaneous T2DM with high phenotypic similarity to human disease, is of great value in identifying potential therapeutic targets for T2DM. Here, we used tandem mass tag (TMT) quantitative proteomics based on liquid chromatography-tandem mass spectrometry to assess the skeletal muscles of a Chinese hamster diabetes model. We identified 38 differentially abundant proteins, of which 14 were upregulated and 24 were downregulated. Further analysis of the differentially abundant proteins revealed that five of them (OPLAH, GST, EPHX1, SIRT5, ALDH1L1) were associated with oxidative stress; these were validated at the protein and mRNA levels, and the results were consistent with the proteomic analysis results. In addition, we evaluated the role of OPLAH in the pathogenesis of T2DM in human skeletal muscle cells (HSKMCs) by silencing it. The knockdown of OPLAH caused an increase in reactive oxygen species content, decreased the GSH content, inhibited the PI3K/Akt/GLUT4 signaling pathway, and reduced glucose uptake. We propose that OPLAH downregulation plays a role in insulin resistance and glucose uptake disorders in HSKMCs possibly via oxidative stress, making it a new therapeutic target for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Cricetinae , Animais , Humanos , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Cricetulus , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Regulação para Baixo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Insulina/metabolismo
15.
Oral Dis ; 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251494

RESUMO

OBJECTIVE: microRNA-450b (miR-450b) plays an important role in cancer progression; however, its function in oral squamous cell carcinoma (OSCC) remains largely unknown. This study aimed to investigate the action mechanisms of miR-450b in OSCC. MATERIALS AND METHODS: OSCC animal model was established via continuous induction with single-drug 7, 12-dimethylbenzo[a]anthracene (DMBA). Animal tissue samples were pathologically typed using haematoxylin-eosin (HE) staining. The Cancer Genome Atlas (TCGA) database was used to predict miR-450b and SERPINB2 expression in head and neck squamous cell carcinoma (HNSCC). qRT-PCR and Western blotting were used to detect gene and protein expression in OSCC tissue and cells, respectively. OSCC cell proliferation, growth, migration and invasion were detected using CCK-8, colony formation, transwell migration and matrigel invasion assays, respectively. Bioinformatic tools were used to predict miR-450b target genes. Dual-luciferase reporter assay was used to verify targeting between miR-450b and SERPINB2. Finally, small interfering RNA (siRNA) was used to reduce SERPINB2 expression to detect its effect on tumourigenesis. RESULTS: Four stages of OSCC carcinogenesis (normal oral epithelium, simple epithelial hyperplasia, dysplasia and OSCC) were identified. miR-450b was found to be overexpressed in OSCC animal samples, HNSCC samples and human OSCC cells. Upregulation of miR-450b significantly promoted OSCC cell proliferation, colony formation, migration and invasion, while its downregulation had the opposite effect. SERPINB2 was found to be a miR-450b target gene, and its expression was negatively correlated with miR-450b expression. Altering SERPINB2 expression effectively inhibited OSCC cell invasion, metastasis and epithelial-mesenchymal transition (EMT). CONCLUSIONS: miR-450b plays a key role in OSCC tumourigenesis by regulating OSCC cell migration, invasion and EMT via SERPINB2.

16.
Am J Clin Nutr ; 116(5): 1208-1218, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36124653

RESUMO

BACKGROUND: Alcohol-induced hangover represents a significant, yet understudied, global hazard and a large socioeconomic burden. OBJECTIVE: The aim of this study was to investigate the effects of hydrogen on relieving drinking and hangover symptoms in 20 healthy volunteers. METHODS: In this pilot, randomized, double-blinded, placebo-controlled, matched, crossover interventional trial, participants were matched into pairs and randomly assigned. Study group 1 inhaled placebo air for 1 h, followed by drinking 100 mL liquor (40% alcohol) within 10 min, and then pure water. Study group 2 inhaled a mixture of hydrogen and oxygen gas for 1 h, followed by drinking 100 mL liquor within 10 min, and then hydrogen dissolved in water. On a second intervention day (crossover) ≥1 wk later, study-group subjects were switched to the opposite order. Breath alcohol concentration (BrAC), hangover severity, and cognitive scores were measured. RESULTS: The BrACs within the hydrogen group were significantly lower than those within the placebo group after 30 min, 60 min, and 90 min (P< 0.05). The hydrogen group reported having fewer hangover symptoms compared with the placebo group (placebo: 77% of symptoms absent, 19.7% of mild symptoms, 2.7% of moderate symptoms, 0.7% of severe symptoms; hydrogen: 88.6% of symptoms absent, 10% of mild symptoms, 1.3% of moderate symptoms, 0% of severe symptoms; P< 0.001). Hydrogen treatment improved cognitive testing scores (P< 0.05), including attention and executive functions. Furthermore, consumption of hydrogen was negatively (ß = -13.016; 95% CI: -17.726, -8.305; P< 0.001) and female sex was positively (ß = 22.611; 95% CI: 16.226, 28.997; P< 0.001) correlated with increased BrACs. Likewise, the consumption of hydrogen was negatively (OR: 0.035; 95% CI: 0.007, 0.168; P< 0.001) while female sex was positively (OR: 28.838; 95% CI: 5.961, 139.506; P< 0.001) correlated with the severity of hangover symptoms. CONCLUSIONS: Hydrogen decreases BrACs and relieves the symptoms of hangovers. This trial was registered at the China Clinical Trial Registry (http://www.chictr.org.cn/showproj.aspx?proj=58359) as ChiCTR2200059988.


Assuntos
Consumo de Bebidas Alcoólicas , Intoxicação Alcoólica , Adulto , Humanos , Feminino , Estudos Cross-Over , Consumo de Bebidas Alcoólicas/efeitos adversos , Etanol/efeitos adversos , Método Duplo-Cego
17.
Mol Biol Rep ; 49(10): 9575-9584, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35980530

RESUMO

BACKGROUND: The CRISPR/Cas9 system is widely used for genome editing in human, rat and mouse cells. In this study, we established Fzd6 mutant mice using CRISPR/Cas9 technology, and obtained Fzd6 homozygous mutant (Fzd6Q152E) mice through breeding. Fzd6 plays a role in depression, but there are few related reports. We used this model to investigate the mechanism of Fzd6 involved in depression, and build a solid foundation for subsequent in-depth studies. METHODS AND RESULTS: The target of Fzd6 mutation was obtained by CRISPR/Cas9 technology and hippocampal tissue was collected for Nissl staining and histological analysis. Blood was collected for enzyme linked immunosorbent assay (ELISA); The gene expression of Fzd6 and the related genes expression in wnt pathway was quantified by quantitative real-time PCR (qRT-PCR), and then expression of Fzd6 and proteins in the Wnt pathway were identified by western blotting. ELISA results showed that the expression levels of brain derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), and Noradrenaline (NE) in serum were significantly decreased in Fzd6Q152E mice, whereas the mRNA expression of Lrp5, Lrp6, and Dkk2 is increased. The western blotting revealed that the expression of Fzd6 and Lrp6 is decreased, although the expression of Dkk2 and Gsk-3ß increased. CONCLUSION: Our study successfully established homozygous Fzd6 mutant mice model. The relationship between Fzd6-Wnt and depression was preliminarily clarified, which provides an ideal animal model for subsequent research on diseases induced by the Fzd6 mutation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sistemas CRISPR-Cas , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Sistemas CRISPR-Cas/genética , Receptores Frizzled/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Camundongos , Norepinefrina , RNA Mensageiro , Ratos , Reprodução , Serotonina , Tecnologia
18.
Front Physiol ; 13: 926795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923240

RESUMO

Coprophagy is an instinctive behavior in rabbit with important effects on growth and reproductive performance. The underlying mechanism of this effect in rabbit is unknown. Here, we used Elizabeth circle as a coprophagy preventing model in female rabbits and assess feed intake, growth, and reproductive performance. We found that preventing coprophagy did not affect feed intake but decreased body weight and weight of several organs and tissues and resulted in complete reproductive failure during the late pregnancy period, accompanied by reduced levels of plasma progesterone. RNA-seq analysis of rabbit ovarian tissues revealed that preventing coprophagy affected significantly 241 genes (DEGs), with the large majority being downregulated. Bioinformatic analyses revealed that those DEGs are mostly involved in apoptosis, immune response, and metabolic pathways. Among DEGs, the lysosomal cysteine protease cathepsin B (CTSB) was significantly downregulated in the coprophagy prevention group. Further studies using siRNA and adenovirus overexpression systems revealed that CTSB promotes the proliferation of rabbit granulosa cells (GCS) and prevents apoptosis. Measurement of transcripts coding for proteins related to apoptosis revealed a minor transcriptomic effect of CTSB, indicating that its effect is likely post-transcriptional. Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. In conclusion, our study demonstrated the detrimental effect on reproduction by preventing coprophagy with a main role for this response played by CTSB on the granulosa cells of the ovary.

19.
J Cell Mol Med ; 26(19): 5033-5043, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36043452

RESUMO

Extracellular vesicles (EVs) are emerging as key players in intercellular communication. Few studies have focused on EV levels in subjects with sleep disorders. Here, we aimed to explore the role of acute sleep deprivation on the quantity and functionality of circulating EVs, and their tissue distribution. EVs were isolated by ultracentrifugation from the plasma of volunteers and animals undergoing one night of sleep deprivation. Arterio-venous shunt, FeCl3 thrombus test and thrombin-induced platelet aggregation assay were conducted to evaluate the in vivo and in vitro bioactivity of small EVs. Western blotting was performed to measure the expression of EV proteins. The fate and distribution of circulating small EVs were determined by intravital imaging. We found that one night of sleep deprivation triggers release of small EVs into the circulation in both healthy individuals and animals. Injection of sleep deprivation-liberated small EVs into animals increased thrombus formation and weight in thrombosis models. Also, sleep deprivation-liberated small EVs promoted platelet aggregation induced by thrombin. Mechanistically, sleep deprivation increased the levels of HMGB1 protein in small EVs, which play important roles in platelet activation. Furthermore, we found sleep deprivation-liberated small EVs are more readily localize in the liver. These data suggested that one night of sleep deprivation is a stress for small EV release, and small EVs released here may increase the risk of thrombosis. Further, small EVs may be implicated in long distance signalling during sleep deprivation-mediated adaptation processes.


Assuntos
Vesículas Extracelulares , Proteína HMGB1 , Trombose , Animais , Vesículas Extracelulares/metabolismo , Proteína HMGB1/metabolismo , Ativação Plaquetária , Privação do Sono , Trombina/metabolismo
20.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 274-281, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809279

RESUMO

A recurrent miscarriage is at least two consecutive miscarriages in the first trimester of pregnancy. Due to the dependence of pregnancy on endocrine changes in the menstrual cycle, its disorders can also affect the outcome of pregnancy. In addition to hormonal disorders, genetic changes are essential factors in recurrent miscarriage. The development and maturation of ovulation depend on the molecular signaling pathways that respond to androgens. Hundreds of mutations leading to resistance to androgen receptor (AR) gene function have been recorded, including the 5'UTR polymorphic region. Therefore, considering the role of androgen receptors and hormonal changes in recurrent miscarriage, this study was performed to investigate the relationship between hormonal changes and AR gene mutations in patients with recurrent miscarriage. In this regard, a case-control study was performed on 150 patients with miscarriage referred to the infertility center. Hysterosalpingography, parental karyotype, vaginal ultrasound, antiphospholipid antibody measurement, anticardiolipin antibody, history and physical examination were performed to evaluate the possible causes of recurrent miscarriage. Hormone levels of LH, FSH, TSH, and Prolactin were measured and compared in two groups with known and unknown causes. Blood samples were also taken from patients, and after DNA extraction, the PCR method was used to determine AR gene mutations. The mean age was 30.2 ± 7.1 years, the mean number of abortions was 2.6 ± 1.2, and the mean duration of marriage was 6.1 ± 2.1 years. The mean of hormones in the two groups with known and unknown causes was compared, that TSH was significantly lower in the group with unknown cause (P = 0.031) and prolactin was higher in recurrent miscarriage patients with polycystic ovaries (P = 0.048). Regarding genetic evaluation, in the 5'UTR region of the androgen receptor gene, deletion of T nucleotide was observed in the +25 position, but no significant difference was found between the two groups. Generally, the findings of this study showed that thyroid dysfunction and hyperprolactinemia should be considered as an endocrine disorder in people with recurrent miscarriage, and genetic evaluation showed that the AR gene mutation was not associated with recurrent miscarriage.


Assuntos
Aborto Habitual , Receptores Androgênicos , Regiões 5' não Traduzidas , Aborto Habitual/genética , Adulto , Androgênios , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Prolactina/genética , Receptores Androgênicos/genética , Tireotropina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...